
1746 QUICK START.RSS

LAD 2 - MAIN --- Total Rungs in File = 12

Page 1 Monday, October 10, 2011 - 16:12:39

MAIN ROUTINE TO TRIGGER START OF EACH OF THE OTHER ROUTINES.
THIS PROGRAM IS A SAMPLE OF BEING ABLE TO DO A QUICK INSTALL AND SETUP OF THE HI 1746 WS MODULE. THIS
PROGRAM CAN BE USED WITH ANY HI 1746 WS MODULE IN A LOCAL CHASSIS AND WITH FIRMWARE VERSION 2.5 OR
HIGHER. IF YOU HAVE FIRMWARE LEVEL LESS THAN 2.5, YOU CAN CONTACT THE FACTORY FOR A SAMPLE
PROGRAM FOR LESSER VERSIONS.
THIS SAMPLE IS DESIGNED AS AN EXAMPLE OF RUNNING THE COMMANDS AND IS NOT INTENDED TO BE A
SUBSTITUTE TO THE USER DEVELOPING THEIR OWN LADDER CODE.
THIS SAMPLE IS SET UP WITH A DIFFERENT SUBROUTINE FOR EACH DIFFERENT COMMAND OR OPERATION. EACH
OF THESE SUBROUTINES IS INDEPENDENT FROM ANY OTHER SUBROUTINE.

The multiplier (discrete output word 15) setting determines the format of the data being transferred. This will apply to all 4 byte parameters
and weight readings. The roc multiplier (not shown in program) will effect only the roc value.

If the multiplier is set to 0, then all 4 byte parameters will be in IEEE floating point format.
If the multiplier is set to any non-zero value, then all 4 byte parameters will be in integer format. The module will multiply the value by the
multiplier and will transfer the integer portion of this result. The user would then receive the value and divide by the multiplier to get the
real value. The reason to use a multiplier would normally be to get decimal point resolution in integer format. Example: If the multiplier is
set to 100, then this effectively moves the decimal point two positions to the right, so the module would transfer data with two decimal
point resolution. Dividing by the multiplier and placing the result in a float register, would then place the decimal point back into the value.

This rung will set the multiplier on first scan. It also gives the user the ability to change the multiplier during operation. If the user turns on
bit b3:0/14, it will write the new multiplier to the output table. After writing this new value, it will clear the trigger bit, so it will not
continuously write the value (although this would not do any harm).

0000
S:1

15

First Pass

B3:0

14

SETS THE MULTIPLIER
IF NEED CHANGE
DURING OPERATION.
SET_MULTIPLIER

COP
Copy File
Source #N7:0
Dest #O:6.15
Length 1

COP

SETS UP THE FORMAT
FOR THE PARAMETERS
AND WEIGHTS.
#MULTIPLIER

U
B3:0

14

SETS THE MULTIPLIER
IF NEED CHANGE
DURING OPERATION.
SET_MULTIPLIER

If the Multiplier is set to zero, then the data will be transfered in IEEE floating point format and the weight cannot be read directly from the
input table. You must copy the weight data to a float location to read. This rung shows an example of copying this data to a float location
to read the gross weight.

0001
EQU

Equal
Source A O:6.15
 100<
Source B 0
 0<

EQU

SETS UP THE FORMAT
FOR THE PARAMETERS
AND WEIGHTS.
MULTIPLIER

COP
Copy File
Source #I:6.18
Dest #F10:15
Length 1

COP

Gross weight in
float format.
#GROSS_WEIGHT

1746 QUICK START.RSS

LAD 2 - MAIN --- Total Rungs in File = 12

Page 2 Monday, October 10, 2011 - 16:12:39

This rung will trigger the routine to write the parameters to the module.

0002
B3:0

1

WRITES SETUP
PARAMETERS TO
MODULE.
DO_SETUP

JSR
Jump To Subroutine
SBR File Number U:3

JSR

This rung will start the routine to do a C2 calibration. Calibration cannot run if the module has an A/D conversion error or failure, or if the
scale is in motion. So the jump to this subroutine is preceded with a check for these error conditions. If an error condition is present, the
routine will not start.
Prior to running this routine, the user should insure the CalLow Weight parameter is set properly and the weight on the scale is the
reference weight for this step in the calibration.

0003
B3:0

2

STARTS THE C2
CALIBRATION PROCESS.
DO_C2_CAL

I:6

240
OTHER

A/D CONVERSION
ERROR. INPUT FROM
LOAD CELLS OUT OF
RANGE.
A_D_CONVERSION_ERROR

I:6

241
OTHER

A/D CONVERSION
FAILURE. PROCESSOR
CANNOT READ ANY
OUTPUT FROM A/D
CONVERTER.
A_D_FAILURE

I:6

246
OTHER

INDICATES THE SCALE
IS IN MOTION.
MOTION

JSR
Jump To Subroutine
SBR File Number U:4

JSR

This rung will start the routine to do the Cal Low Cmd of a Traditional calibration. Calibration cannot run if the module has an A/D
conversion error or failure, or if the scale is in motion. So the jump to this subroutine is preceded with a check for these error conditions.
If an error condition is present, the routine will not start.
Prior to running this routine, the user should insure the CalLow Weight parameter is set properly and the weight on the scale is the
reference weight for this step in the calibration.

0004
B3:0

3

STARTS THE
TRADITIONAL
CALIBRATION LOW
COMMAND.
DO_TRAD_CAL_LOW

I:6

240
OTHER

A/D CONVERSION
ERROR. INPUT FROM
LOAD CELLS OUT OF
RANGE.
A_D_CONVERSION_ERROR

I:6

241
OTHER

A/D CONVERSION
FAILURE. PROCESSOR
CANNOT READ ANY
OUTPUT FROM A/D
CONVERTER.
A_D_FAILURE

I:6

246
OTHER

INDICATES THE SCALE
IS IN MOTION.
MOTION

JSR
Jump To Subroutine
SBR File Number U:5

JSR

1746 QUICK START.RSS

LAD 2 - MAIN --- Total Rungs in File = 12

Page 3 Monday, October 10, 2011 - 16:12:39

This rung will start the routine to do the Cal HI Cmd of a Traditional calibration. Calibration cannot run if the module has an A/D
conversion error or failure, or if the scale is in motion. So the jump to this subroutine is preceded with a check for these error conditions.
If an error condition is present, the routine will not start.
Prior to running this routine, the user should insure the SPAN Weight parameter is set properly and the weight on the scale is the reference
weight for this step in the calibration.

0005
B3:0

4

STARTS THE
TRADITIONAL
CALIBRATION HIGH
COMMAND.
DO_TRAD_CAL_HIGH

I:6

240
OTHER

A/D CONVERSION
ERROR. INPUT FROM
LOAD CELLS OUT OF
RANGE.
A_D_CONVERSION_ERROR

I:6

241
OTHER

A/D CONVERSION
FAILURE. PROCESSOR
CANNOT READ ANY
OUTPUT FROM A/D
CONVERTER.
A_D_FAILURE

I:6

246
OTHER

INDICATES THE SCALE
IS IN MOTION.
MOTION

JSR
Jump To Subroutine
SBR File Number U:6

JSR

This rung will start the routine to do the save cmd. This will save the settings and calibration to non-volatile memory. The SAVE cannot
run if the module has a NON-VOLATILE RAM FAILURE. So the jump to this subroutine is preceded with a check for this error
condition. If the error condition is present, the routine will not start.

0006
B3:0

5

SAVES TO NON
VOLATILE MEMORY.
DO_SAVE

I:6

248
OTHER

INDICATES THE NON
VOLATILE RAM HAS A
FAILURE.
NON_VOLATILE_FAIL

JSR
Jump To Subroutine
SBR File Number U:7

JSR

This starts the routine to tare the net weight. This command cannot run if the module has an A/D conversion error or failure, or if the scale
is in motion. So the jump to this subroutine is preceded with a check for these error conditions. If an error condition is present, the routine
will not start.

0007
B3:0

6

RUNS THE TARE
COMMAND.
DO_TARE

I:6

240
OTHER

A/D CONVERSION
ERROR. INPUT FROM
LOAD CELLS OUT OF
RANGE.
A_D_CONVERSION_ERROR

I:6

241
OTHER

A/D CONVERSION
FAILURE. PROCESSOR
CANNOT READ ANY
OUTPUT FROM A/D
CONVERTER.
A_D_FAILURE

I:6

246
OTHER

INDICATES THE SCALE
IS IN MOTION.
MOTION

JSR
Jump To Subroutine
SBR File Number U:8

JSR

1746 QUICK START.RSS

LAD 2 - MAIN --- Total Rungs in File = 12

Page 4 Monday, October 10, 2011 - 16:12:39

This starts the routine to zero the gross weight. This command cannot run if the module has an A/D conversion error or failure, or if the
scale is in motion. So the jump to this subroutine is preceded with a check for these error conditions. If an error condition is present, the
routine will not start.

0008
B3:0

7

RUNS THE ZERO
COMMAND.
DO_ZERO

I:6

240
OTHER

A/D CONVERSION
ERROR. INPUT FROM
LOAD CELLS OUT OF
RANGE.
A_D_CONVERSION_ERROR

I:6

241
OTHER

A/D CONVERSION
FAILURE. PROCESSOR
CANNOT READ ANY
OUTPUT FROM A/D
CONVERTER.
A_D_FAILURE

I:6

246
OTHER

INDICATES THE SCALE
IS IN MOTION.
MOTION

JSR
Jump To Subroutine
SBR File Number U:9

JSR

This rung will trigger the routine to read the parameters from the module.

0009
B3:0

8

READ THE
SETUP PARAMETERS
FROM THE MODULE.
DO_READ_SETUP

JSR
Jump To Subroutine
SBR File Number U:10

JSR

IN THE EVENT OF AN ERROR OCCURING DURING ONE OF THE COMMANDS, THE ERROR FLAG WILL BE SET. THIS
RUNG GIVES THE OPERATOR A WAY TO MANUALLY CLEAR THE ERROR. IF THE ERROR IS NOT CLEARED PRIOR TO
THE NEXT COMMAND, THEN IT WILL EITHER GET CLEARED OR RESET DEPENDING ON THE OUTCOME OF THE
COMMAND BEING RUN AT THAT TIME.

0010
B3:0

15

MANUAL METHOD TO
CLEAR ERROR FLAG.
CLEAR_ERROR_FLAG

U
B3:0

0

INDICATION THAT
COMMAND FAILED.
ERROR_FLAG

U
B3:0

15

MANUAL METHOD TO
CLEAR ERROR FLAG.
CLEAR_ERROR_FLAG

0011 END

1746 QUICK START.RSS

LAD 3 - SETUP - WRITE PARAMETERS TO MODULE --- Total Rungs in File = 3

Page 1 Monday, October 10, 2011 - 16:12:40

All the parameters are set up through the M files. There are two methods of setting up the parameters in the M files. One method is to use
the SETPARAM Command; the other is what I call the DIRECT SET method to directly write the parameter into the M file location.
The SETPARAM command also uses the M files, and will allow the user to write one parameter at a time. It is somewhat complicated to
set up.
This routine shows the easier, DIRECT SET method.

The manual shows a list of the parameters and their word location within the M files. The DIRECT SET method of writing to a parameter
is to copy the new value into the M file at the word location for that parameter. CAUTION: There is no error checking for the values
being written directly into the module using this method. It will be up to the user to have the values in a proper range and format for the
parameters being set. If you need to have error checking done on the parameter values to be written, then you need to use the SETPARAM
(not shown in this example) command to write the values.

There are two types of parameters in the module. There are 4 byte (32 bit) parameters and 1 byte (8 bit) parameters.
The 1 byte parameters will always be in integer format. These parameters have been set up in data file N7 starting word 10. There are 13
of this type of parameter. Not all these parameters must have a value in them, but this program will write all 13 of these parameters.

This rung shows a copy command that will copy all 13 of these 1 byte parameters into the modules M0 file, starting at word location 52.

0000
COP

Copy File
Source #N7:10
Dest #M0:6.52
Length 13

COP

1746 QUICK START.RSS

LAD 3 - SETUP - WRITE PARAMETERS TO MODULE --- Total Rungs in File = 3

Page 2 Monday, October 10, 2011 - 16:12:40

All the 4 byte parameters can have either integer or float format to them, depending on the Multiplier setting. This rung checks for the
multiplier setting and if it is zero, will get the parameter data from a float register; and if the multiplier is non-zero, will get the parameter
data from an integer location.
This rung will copy all 12 of the 4 byte parameters into the module. NOTE: when setting a value in integer format, each parameter will
occupy 2 words of data. The order of bits is important, so the order of the two word locations are MSW ((most significant word (upper 16
bits of data)) is the first location and the LSW ((least significant word (lower 16 bits of data)) will be the second location.

Once the values are written, the trigger bit will be unlatched, turning off the routine.

0001
NEQ

Not Equal
Source A O:6.15
 100<
Source B 0
 0<

NEQ

SETS UP THE FORMAT
FOR THE PARAMETERS
AND WEIGHTS.
MULTIPLIER

COP
Copy File
Source #N7:30
Dest #M0:6.28
Length 24

COP

EQU
Equal
Source A O:6.15
 100<
Source B 0
 0<

EQU

SETS UP THE FORMAT
FOR THE PARAMETERS
AND WEIGHTS.
MULTIPLIER

COP
Copy File
Source #F8:0
Dest #M0:6.28
Length 24

COP

U
B3:0

1

WRITES SETUP
PARAMETERS TO
MODULE.
DO_SETUP

0002 END

1746 QUICK START.RSS

LAD 4 - C2 CAL - RUN C2 CALIBRATION COMMAND --- Total Rungs in File = 4

Page 1 Monday, October 10, 2011 - 16:12:40

C2 calibration is a method of calibrating the scale without the need for test weights. The module will read specification data from the load
cells and using this data will set up the response curve of the load cell system. Knowing the response curve of the load cell and any known
point on this curve, we have the calibration of the scale.
The C2 calibration command is triggered by setting bit #7 of the discrete table output word 14. This will start the calibration process.
Depending on the configuration of your system and type of summing box, this command could take up to 20 seconds to complete.
Completion of the command will be checked in the next rung. When the command is triggered, the module will take the current input from
the scale and "assign" the CalLowWeight value to this input level. This is the known point on the response curve.

0000
B3:0

2

STARTS THE C2
CALIBRATION PROCESS.
DO_C2_CAL

L
O:6

231
OTHER

TRIGGERS C2
CALIBRATION
C2_CAL_CMD

When a command that was triggered using word 14 of the discrete table output word 14, discrete table input word 14 echoes the command
once the module has completed running the command. The first instruction is checking for the echo of the command back. Once we get
this echo back, the program will check for an error. Input word 15, bit #14 is the error bit to check for. When a command is triggered in
word 14 of the output table, and you have the echo of the command in word 14 of the input table, then word 15, bit 14, of the input table
will be used as an error indication. This bit will only be valid while you program still has command bit turned on in output word 14 and the
echo is present in the input word 14.
This rung will either set or reset the error flag based on the error bit. If it is set, the error flag will be set. If it is not set, then this will clear
the error flag from any previous command.

Once we have the determination of pass/fail, then we start a cleanup of the control bits used to trigger the command.

0001
I:6

231
OTHER

INDICATES THE C2
CALIBRATION COMMAND
IS DONE.
C2_CAL_CMD_DONE

I:6

254
OTHER

INDICATES COMMAND
FAILED.
CMD_ERROR_STATUS

L
B3:0

0

INDICATION THAT
COMMAND FAILED.
ERROR_FLAG

I:6

254
OTHER

INDICATES COMMAND
FAILED.
CMD_ERROR_STATUS

U
B3:0

0

INDICATION THAT
COMMAND FAILED.
ERROR_FLAG

L
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

1746 QUICK START.RSS

LAD 4 - C2 CAL - RUN C2 CALIBRATION COMMAND --- Total Rungs in File = 4

Page 2 Monday, October 10, 2011 - 16:12:40

Once the command is done and we have the determination of pass/fail, we need to clean up any control bits. This rung will remove the
command bit in output word 14 that started the calibration, will clear the bit allowing this subroutine to run and clear the control bit for this
cleanup.

0002
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

CLR
Clear
Dest O:6.14
 0<

CLR

TRIGGERS COMMANDS
CMD_TRIGGERS

U
B3:0

2

STARTS THE C2
CALIBRATION PROCESS.
DO_C2_CAL

U
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

0003 END

1746 QUICK START.RSS

LAD 5 - CAL LOW - RUN CALIBRATION LOW COMMAND --- Total Rungs in File = 4

Page 1 Monday, October 10, 2011 - 16:12:40

Traditional or Hard Calibration is the method of calibrating the scale where test weights are required. This method of calibration will have
two points of known weight. These are normally and empty scale (0 units of weight) and span (known test weight on scale).
The Cal Low command is the first part of a traditional calibration. This is the low point, normally an empty scale. The unit will take the
input signal from the scale at the time of this command and "assign" it the weight entered as the CalLowWeight parameter.

The CalLow command is triggered by setting bit #5 of the discrete table output word 14. This will start the calibration process. Depending
on the configuration of your system and type of summing box, this command could take up to 20 seconds to complete. Completion of the
command will be checked in the next rung.

0000
B3:0

3

STARTS THE
TRADITIONAL
CALIBRATION LOW
COMMAND.
DO_TRAD_CAL_LOW

L
O:6

229
OTHER

TRIGGERS CAL LOW
COMMAND
CAL_LOW_CMD

When a command that was triggered using word 14 of the discrete table output word 14, discrete table input word 14 echoes the command
once the module has completed running the command. The first instruction is checking for the echo of the command back. Once we get
this echo back, the program will check for an error. Input word 15, bit #14 is the error bit to check for. When a command is triggered in
word 14 of the output table, and you have the echo of the command in word 14 of the input table, then word 15, bit 14, of the input table
will be used as an error indication. This bit will only be valid while you program still has command bit turned on in output word 14 and the
echo is present in the input word 14.
This rung will either set or reset the error flag based on the error bit. If it is set, the error flag will be set. If it is not set, then this will clear
the error flag from any previous command.

Once we have the determination of pass/fail, then we start a cleanup of the control bits used to trigger the command.

0001
I:6

229
OTHER

INDICATES THE
TRADITIONAL
CALIBRATION LOW
COMMAND IS DONE.
CAL_LOW_CMD_DONE

I:6

254
OTHER

INDICATES COMMAND
FAILED.
CMD_ERROR_STATUS

L
B3:0

0

INDICATION THAT
COMMAND FAILED.
ERROR_FLAG

I:6

254
OTHER

INDICATES COMMAND
FAILED.
CMD_ERROR_STATUS

U
B3:0

0

INDICATION THAT
COMMAND FAILED.
ERROR_FLAG

L
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

1746 QUICK START.RSS

LAD 5 - CAL LOW - RUN CALIBRATION LOW COMMAND --- Total Rungs in File = 4

Page 2 Monday, October 10, 2011 - 16:12:40

Once the command is done and we have the determination of pass/fail, we need to clean up any control bits. This rung will remove the
command bit in output word 14 that started the calibration, will clear the bit allowing this subroutine to run and clear the control bit for this
cleanup.

0002
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

CLR
Clear
Dest O:6.14
 0<

CLR

TRIGGERS COMMANDS
CMD_TRIGGERS

U
B3:0

3

STARTS THE
TRADITIONAL
CALIBRATION LOW
COMMAND.
DO_TRAD_CAL_LOW

U
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

0003 END

1746 QUICK START.RSS

LAD 6 - CAL HIGH - RUN CALIBRATION HIGH COMMAND --- Total Rungs in File = 4

Page 1 Monday, October 10, 2011 - 16:12:40

Traditional or Hard Calibration is the method of calibrating the scale where test weights are required. This method of calibration will have
two points of known weight. These are normally and empty scale (0 units of weight) and span (known test weight on scale).
The Cal High command is the second part of a traditional calibration. This is the high point, with a known test weight on the scale. This
test weight needs to be equal to the Span parameter entry set into the unit. The unit will take the input signal from the scale at the time of
this command and "assign" it the weight entered as the Span Weight parameter.

The Calhigh command is triggered by setting bit #6 of the discrete table output word 14. This will start the calhigh process. Completion of
the command will be checked in the next rung.

0000
B3:0

4

STARTS THE
TRADITIONAL
CALIBRATION HIGH
COMMAND.
DO_TRAD_CAL_HIGH

L
O:6

230
OTHER

TRIGGERS CAL HIGH
COMMAND.
CAL_HI_CMD

When a command that was triggered using word 14 of the discrete table output word 14, discrete table input word 14 echoes the command
once the module has completed running the command. The first instruction is checking for the echo of the command back. Once we get
this echo back, the program will check for an error. Input word 15, bit #14 is the error bit to check for. When a command is triggered in
word 14 of the output table, and you have the echo of the command in word 14 of the input table, then word 15, bit 14, of the input table
will be used as an error indication. This bit will only be valid while you program still has command bit turned on in output word 14 and the
echo is present in the input word 14.
This rung will either set or reset the error flag based on the error bit. If it is set, the error flag will be set. If it is not set, then this will clear
the error flag from any previous command.

Once we have the determination of pass/fail, then we start a cleanup of the control bits used to trigger the command.

0001
I:6

230
OTHER

INDICATES THE
TRADITIONAL
CALIBRATION HIGH
COMMAND IS DONE.
CAL_HI_CMD_DONE

I:6

254
OTHER

INDICATES COMMAND
FAILED.
CMD_ERROR_STATUS

L
B3:0

0

INDICATION THAT
COMMAND FAILED.
ERROR_FLAG

I:6

254
OTHER

INDICATES COMMAND
FAILED.
CMD_ERROR_STATUS

U
B3:0

0

INDICATION THAT
COMMAND FAILED.
ERROR_FLAG

L
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

1746 QUICK START.RSS

LAD 6 - CAL HIGH - RUN CALIBRATION HIGH COMMAND --- Total Rungs in File = 4

Page 2 Monday, October 10, 2011 - 16:12:40

Once the command is done and we have the determination of pass/fail, we need to clean up any control bits. This rung will remove the
command bit in output word 14 that started the calibration, will clear the bit allowing this subroutine to run and clear the control bit for this
cleanup.

0002
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

CLR
Clear
Dest O:6.14
 0<

CLR

TRIGGERS COMMANDS
CMD_TRIGGERS

U
B3:0

4

STARTS THE
TRADITIONAL
CALIBRATION HIGH
COMMAND.
DO_TRAD_CAL_HIGH

U
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

0003 END

1746 QUICK START.RSS

LAD 7 - SAVE - SAVE SETUP TO NON-VOLATILE MEMORY --- Total Rungs in File = 4

Page 1 Monday, October 10, 2011 - 16:12:40

The save command will write the setup and calibration settings to non-volatile memory in the module. Then, if the module is powered
down at any time, when it powers back up, it will come back up to its previous running condition without needing to re-setup the module.

The Save command is triggered by setting bit #2 of the discrete table output word 14. This will start the save process. Completion of the
command will be checked in the next rung.

0000
B3:0

5

SAVES TO NON
VOLATILE MEMORY.
DO_SAVE

L
O:6

226
OTHER

TRIGGERS WRITE TO
NON-VOLATILE (SAVE)
COMMAND.
SAVE_CMD

When a command that was triggered using word 14 of the discrete table output word 14, discrete table input word 14 echoes the command
once the module has completed running the command. The first instruction is checking for the echo of the command back. Once we get
this echo back, the program will check for an error. Input word 15, bit #14 is the error bit to check for. When a command is triggered in
word 14 of the output table, and you have the echo of the command in word 14 of the input table, then word 15, bit 14, of the input table
will be used as an error indication. This bit will only be valid while you program still has command bit turned on in output word 14 and the
echo is present in the input word 14.
This rung will either set or reset the error flag based on the error bit. If it is set, the error flag will be set. If it is not set, then this will clear
the error flag from any previous command.

Once we have the determination of pass/fail, then we start a cleanup of the control bits used to trigger the command.

0001
I:6

226
OTHER

INDICATES THE SAVE
(WRITE TO
NON-VOLATILE)
COMMAND IS DONE.
SAVE_CMD_DONE

I:6

254
OTHER

INDICATES COMMAND
FAILED.
CMD_ERROR_STATUS

L
B3:0

0

INDICATION THAT
COMMAND FAILED.
ERROR_FLAG

I:6

254
OTHER

INDICATES COMMAND
FAILED.
CMD_ERROR_STATUS

U
B3:0

0

INDICATION THAT
COMMAND FAILED.
ERROR_FLAG

L
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

1746 QUICK START.RSS

LAD 7 - SAVE - SAVE SETUP TO NON-VOLATILE MEMORY --- Total Rungs in File = 4

Page 2 Monday, October 10, 2011 - 16:12:40

Once the command is done and we have the determination of pass/fail, we need to clean up any control bits. This rung will remove the
command bit in output word 14 that started the Save, will clear the bit allowing this subroutine to run and clear the control bit for this
cleanup.

0002
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

CLR
Clear
Dest O:6.14
 0<

CLR

TRIGGERS COMMANDS
CMD_TRIGGERS

U
B3:0

5

SAVES TO NON
VOLATILE MEMORY.
DO_SAVE

U
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

0003 END

1746 QUICK START.RSS

LAD 8 - TARE - RUN THE TARE COMMAND --- Total Rungs in File = 4

Page 1 Monday, October 10, 2011 - 16:12:40

The Tare command will cause the net weight to go to zero.

The Tare command is triggered by setting bit #1 of the discrete table output word 14. This will start the Tare process. Completion of the
command will be checked in the next rung.

0000
B3:0

6

RUNS THE TARE
COMMAND.
DO_TARE

L
O:6

225
OTHER

TRIGGERS THE TARE
COMMAND.
TARE_CMD

When a command that was triggered using word 14 of the discrete table output word 14, discrete table input word 14 echoes the command
once the module has completed running the command. The first instruction is checking for the echo of the command back. Once we get
this echo back, the program will check for an error. Input word 15, bit #14 is the error bit to check for. When a command is triggered in
word 14 of the output table, and you have the echo of the command in word 14 of the input table, then word 15, bit 14, of the input table
will be used as an error indication. This bit will only be valid while you program still has command bit turned on in output word 14 and the
echo is present in the input word 14.
This rung will either set or reset the error flag based on the error bit. If it is set, the error flag will be set. If it is not set, then this will clear
the error flag from any previous command.

Once we have the determination of pass/fail, then we start a cleanup of the control bits used to trigger the command.

0001
I:6

225
OTHER

INDICATES THE TARE
COMMAND IS DONE.
TARE_CMD_DONE

I:6

254
OTHER

INDICATES COMMAND
FAILED.
CMD_ERROR_STATUS

L
B3:0

0

INDICATION THAT
COMMAND FAILED.
ERROR_FLAG

I:6

254
OTHER

INDICATES COMMAND
FAILED.
CMD_ERROR_STATUS

U
B3:0

0

INDICATION THAT
COMMAND FAILED.
ERROR_FLAG

L
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

1746 QUICK START.RSS

LAD 8 - TARE - RUN THE TARE COMMAND --- Total Rungs in File = 4

Page 2 Monday, October 10, 2011 - 16:12:40

Once the command is done and we have the determination of pass/fail, we need to clean up any control bits. This rung will remove the
command bit in output word 14 that started the Tare, will clear the bit allowing this subroutine to run and clear the control bit for this
cleanup.

0002
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

CLR
Clear
Dest O:6.14
 0<

CLR

TRIGGERS COMMANDS
CMD_TRIGGERS

U
B3:0

6

RUNS THE TARE
COMMAND.
DO_TARE

U
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

0003 END

1746 QUICK START.RSS

LAD 9 - ZERO - RUN THE ZERO COMMAND --- Total Rungs in File = 4

Page 1 Monday, October 10, 2011 - 16:12:40

The Zero command will cause the Gross weight to go to zero as long as it is within the Zero Tolerance.

The Tare command is triggered by setting bit #0 of the discrete table output word 14. This will start the Zero process. Completion of the
command will be checked in the next rung.

0000
B3:0

7

RUNS THE ZERO
COMMAND.
DO_ZERO

L
O:6

224
OTHER

TRIGGERS THE ZERO
COMMAND.
ZERO_CMD

When a command that was triggered using word 14 of the discrete table output word 14, discrete table input word 14 echoes the command
once the module has completed running the command. The first instruction is checking for the echo of the command back. Once we get
this echo back, the program will check for an error. Input word 15, bit #14 is the error bit to check for. When a command is triggered in
word 14 of the output table, and you have the echo of the command in word 14 of the input table, then word 15, bit 14, of the input table
will be used as an error indication. This bit will only be valid while you program still has command bit turned on in output word 14 and the
echo is present in the input word 14.
This rung will either set or reset the error flag based on the error bit. If it is set, the error flag will be set. If it is not set, then this will clear
the error flag from any previous command.

Once we have the determination of pass/fail, then we start a cleanup of the control bits used to trigger the command.

0001
I:6

224
OTHER

INDICATES THE ZERO
COMMAND IS DONE.
ZERO_CMD_DONE

I:6

254
OTHER

INDICATES COMMAND
FAILED.
CMD_ERROR_STATUS

L
B3:0

0

INDICATION THAT
COMMAND FAILED.
ERROR_FLAG

I:6

254
OTHER

INDICATES COMMAND
FAILED.
CMD_ERROR_STATUS

U
B3:0

0

INDICATION THAT
COMMAND FAILED.
ERROR_FLAG

L
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

1746 QUICK START.RSS

LAD 9 - ZERO - RUN THE ZERO COMMAND --- Total Rungs in File = 4

Page 2 Monday, October 10, 2011 - 16:12:40

Once the command is done and we have the determination of pass/fail, we need to clean up any control bits. This rung will remove the
command bit in output word 14 that started the Zero, will clear the bit allowing this subroutine to run and clear the control bit for this
cleanup.

0002
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

CLR
Clear
Dest O:6.14
 0<

CLR

TRIGGERS COMMANDS
CMD_TRIGGERS

U
B3:0

7

RUNS THE ZERO
COMMAND.
DO_ZERO

U
B3:1

0

INDICATION THE
COMMAND IS DONE.
STARTS CLEANUP OF
CONTROL BITS AND
CLEARS COMMAND.
COMMAND_DONE

0003 END

1746 QUICK START.RSS

LAD 10 - READ SETUP - READS THE SETUP PARAMETERS FROM THE MODULE --- Total Rungs in File = 3

Page 1 Monday, October 10, 2011 - 16:12:40

This routine lets the user read the parameters already set into the module. This can be done after changes have been made to check they
were done correctly, or can be done prior to changes being written to the module to minimize changes actually done.

This first rung will read the single byte parameters and write the values into an integer location for the user to have available. These are the
values that are not affected by the multiplier setting.

0000
COP

Copy File
Source #M1:6.52
Dest #N9:10
Length 13

COP

UNIT OF MEASURE
TO EITHER LBS OR KG.
#METRIC_

This rung will read the 4 byte parameter values. These values are affected by the multiplier setting, so there is a check on this setting prior
to actual read instruction. If the multiplier is zero, indicating float format is used, then the values will be copied into a float location.
If the multiplier is non-zero, indicating integer format is used, then the values will be copied into an integer location.

After reading the values, the control bit for this routine will be turned off.

0001
NEQ

Not Equal
Source A O:6.15
 100<
Source B 0
 0<

NEQ

SETS UP THE FORMAT
FOR THE PARAMETERS
AND WEIGHTS.
MULTIPLIER

COP
Copy File
Source #M1:6.28
Dest #N9:30
Length 24

COP

MOST SIGNIFICANT
WORD OF TARE WEIGHT.
#TARE_WEIGHT_MSW_

EQU
Equal
Source A O:6.15
 100<
Source B 0
 0<

EQU

SETS UP THE FORMAT
FOR THE PARAMETERS
AND WEIGHTS.
MULTIPLIER

COP
Copy File
Source #M1:6.28
Dest #F10:0
Length 12

COP

TARE WEIGHT VALUE.
DIFFERENCE BETWEEN
GROSS AND NET
WEIGHT.
#TARE_WEIGHT_

U
B3:0

8

READ THE
SETUP PARAMETERS
FROM THE MODULE.
DO_READ_SETUP

0002 END

